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A method of  analysis of  the stochastic behaviour of  electrolyzers due to stationary random fluctu- 
ations in current and inlet electrolyte concentration is presented. The analysis is illustrated by means 
of  a numerical example. 

Nomenclature 

F 
I 

J 
K 
N(A) 

n 

P(z) 

Q 

Rz(~) 
Sz(co) 
To, T, 

u 

V 
v 

electrolyte concentration; c~ inlet 
electrolyte concentration; CE exit 
electrolyte concentration (mol dm -3) 
Faraday's constant (96 487 C mol- l ) 
current (A) 
imaginary unit = x / ( -  l) 
equivalent gain 
nonlinear function of amplitude A of an 
independent variable 
number of electrons participating in the 
electrode process 
probability density function of random 
variable z 
electrolyte volumetric flow rate 
(dm 3 min ~) 
autocorrelation function 
power spectrum of random variable z 
Frequency characteristic parameters 
(obtained from process reaction curve) 
shorthand for the product ez~ (see 
Equation 30) 
active volume of electrolyzer (dm 3) 
shorthand for the product flz2 (see 
Equation 30) 
dimensionless exit electrolyte 
concentration 

1. Introduction 

Random perturbations in physical systems are usually 
caused by unexpected changes in parameters or 
operating conditions, faulty components and connec- 
tions and by human error. Such perturbations are 
treated more efficiently by techniques of probability 
theory than by deterministic mathematical methods, 
provided that their stochastic characteristics are 
known. A particularly interesting and useful domain 
of the random perturbation approach is process 
dynamics and control, with a well-established fun- 
damental theory (for example [1-7]), permitting the 
estimation of the behaviour of system output on the 
basis of the stochastic parameters of input(s), and the 
dynamic characteristics of the system itself. 

The treatment of random perturbations in elec- 
trolytic reactors has so far received limited attention 

z~ dimensionless electrolyte inlet 
concentration 

z2 dimensionless current 
c~ lumped parameter defined as - c*/c* 
fl lumped parameter defined as I*/nFQe* 
? lumped parameter defined as a I*/nFVc~ 
2 'dummy' integration variable 

2 variance (or mean power) of random 0" z 

variable z 
r mean residence time in electrolyzer, equal 

to V/Q (min) 
~b(jco) frequency spectrum 
co angular frequency 

Special symbols and functions 
* steady state (superscript) 
err error function, defined as 

2 z 
erf (z) = . ~  I0 exp ( -  2 2) d2 

o step magnitude (superscript) 
H Heaviside's shifting function, defined as 

H ( t -  r) = 0 f o r t  < r ; H ( t -  r) = 1 
fo r t  ~> r 

F gamma function, defined as 
oO 

F(z) = ~0 )J-~ exp ( - 2 )  d2 
CSTER acronym for continuous flow stirred tank 

electrolytic reactor 
PFER acronym for plug-flow electrolytic reactor 

[8-11], due to inherent difficulties in treating non- 
ideal electrolyzer dynamics (i.e., the dynamics of elec- 
trolyzers not amenable to the CSTER or PFER 
approach). The major utility of the stochastic 
approach lies in the determination of electrolyzer per- 
formances from 'on-line' information obtained from 
recorded plant data: it is not necessary to subject an 
electrolyzer to off-line, purposefully induced pertur- 
bations. Information thus obtained without the inter- 
ruption of normal (day-to-day) operation schedules 
can be employed to predict electrolyzer performance 
under various stochastic conditions and it can serve as 
a tool for design of control as well as analysis. 

The approach described in this paper addresses a 
specific avenue of stochastic analysis, where the 
variance of output behaviour is used as a measure of 
performance. The exact form of the random pertur- 
bations in the input is im material so long as their 
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stochastic properties (e.g. correlation functions) are 
known. The approach applies in principle to any arbi- 
trary electrolyzer, regardless of its size, shape, geometry 
and electrode type, although specific simplifications 
may be feasible in particular configurations. 

2. Basic theory 

Consider an arbitrary electrolyzer with stationary 
random perturbations in the electric current (single- 
perturbation), or in the electric current and the inlet 
electrolyte concentration (dual perturbation). The 
output perturbation is taken to be the stochastic 
response of  the effluent electrolyte concentration. This 
assumption appears to confine the approach to elec- 
trolyzers where outlet concentration may be regarded 
as a reliable measure of electrolyzer performance, but 
other outputs can also be accommodated, if necessary. 
The outlet electrolyte concentration, a convenient 
variable to monitor continuously, is in any event a 
desirable choice. It is assumed that the perturbations 
in electric current and inlet electrolyte concentration 
are mutually independent, i.e. that their cross-corre- 
lation function is zero. The dynamics of the electrolyzer 
is represented by the product of two functions. The 
first function, known as the frequency spectrum, is 
obtained from experimental transient response data, 
and the second function, which expresses the effect of 
input perturbation amplitudes on the response, repre- 
sents nonlinearities. In this manner the dynamics 
are represented by the product of a linear, purely 
frequency-dependent function, and a nonlinear, purely 
amplitude-dependent function. This is also the fun- 
damental idea in the classical 'describing function' 
approach [6, 7, 12] to nonlinear system stability, 
whose applicability to a certain class of electrolyzers 
has been discussed [13] earlier. Then, in the case of  a 
single perturbation, the response variance is given by 
the integral 

~,. = _. Na(A)14)(jo))l 2 &(o)) do) (1) 

where the dimensionless input and output variables 
are defined as 

z - ( I -  I * ) / I *  and x =- (c* - c)/c* (2) 

the asterisk referring to the state of the electrolyzer 
prior to perturbation. The variance of the input per- 
turbation is given by the similar expression 

o'; = j_ :~ s~(o)) do) (3) 

The power spectrum & (co) is the Fourier transform of 
the input autocorrelation function R=(50: 

= I_~o R~('a0 exp ( - j o ) ) O  d2 (4) 

In the case of a dual perturbation (perturbation in 
current and inlet concentration), the dimensionless 
input variables are defined as 

z, =- (ci - c*) /c* (5a) 

z2 =- ( I -  I * ) / I *  (5b) 

. Equations 3 and 4 define the stochastic characteristics 
of the two input perturbations required for treatment 
in the sequel. In order to obtain a~, N(A) and qS@o) 
must be established; a particular approach to this task 
is via the equivalent gain and the process reaction 
curve. 

3. Treatment of the perturbation amplitude efl'ect: the 
equivalent gain approach 

The equivalent gain principle is a linear approxi- 
mation to a nonlinear function when the independent 
(or input) variable is a stationary random function 
[7, 8, 14]. The equivalent gain is obtained by minimizing 
the residual in the conventional least-squares sense, 
and it can be written as 

K = ~ ] + |  z f ( z )P ( z )  dz  (6) 

where f(z) is the mathematical expression for the non- 
linearity. If, in particular, the random perturbation in 
the input is Gaussian with probability density function 

1 
P(z) - o~x/(2z) exp ( - - Z 2 / 2 0  "2) (7) 

then the equivalent gain is simplified to 

1 )+;7 df(z) exp ( - z 2 / 2 a  2) dz  (8) 
K = ~zx/(27c ) -~, d--7- ~ 

Modification of Equation 8 for two independent 
Gaussian inputs simply requires the replacement of  a 2 
by the sum of the individual variances, It follows that 
the quantity K, computed via Equations 6 or 8, 
replaces N ( A )  in Equation 1; this is an important 
simplification. 

4. Treatment of the frequency spectrum: the process 
reaction curve approach 

The process reaction curve approach is a convenient 
means of establishing the tYequency spectrum of a 
system from the experimental response to a step per- 
turbation in the input [15]. In one of  its modern and 
more accurate version by Smith [16, 17], a frequency 
spectrum of the form 

qS(jco) = exp (-jT0o))/(1 + jTio)) (9) 

is obtained by measuring 0,, the time required for the 
experimental response to reach 28.3 % and 02, the time 
required to reach 63.2 of  the overall change. Then, 
Tl = 1.5(02 - 01) and To = 02 - T, are calculated. 
In the Ziegler-Nichols [15, 17] approach a tangent line 
is drawn at the inflection point of the process reaction 
curve, whose intersection with the time axis is the 
assigned delay-time parameter in the exponential term 
of Equation 9. The time constant is obtained by sub- 
tracting this intersection value from the intersection of 
the large-time asymptote and the tangent line, projected 
on the time axis. While this method is faster, it may 
assign an unduly large delay time if the process 
response is not sluggish at very short times. The first- 
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order form of O(jco) in Equation 9 is quite acceptable 
for a single electrolyzer, although second-order con- 
struction methods [18, 19] are also available if the 
electrotyzer response is too sluggish for a first-order 
approximation. O(jco) may also be regarded as the 
transfer function of the electrolyzer, obtained by 
Fourier transformation of its time-domain dynamic 
equation. The latter is not a p r i o r i  solvable, of  course, 
in the case of  an (arbitrary) non-ideal electrolyzer. 

5. The non-ideal tank electrolyzer 

It follows from the overall material balance (assuming 
100% current efficiency): 

V d c / d t  = Q c  i - Q c  E - I / n F  (10) 

that the steady-state dimensionless exit concentration, 
inlet concentration and current are related by the 
linear expression 

x = ~zl  + fiz2 (11) 

which serves for the determination of N(A) or K, if the 
equivalent gain approach is chosen. Let the super- 
scripted values z~ and z~', i = 1, 2, denote the lower 
and upper bounds, respectively, of perturbation mag- 
nitudes; these bounds are dictated by technological 
considerations for a given electrolytic process. In the 
instance of  perturbation in the current (z~ = 0) 
Equation 7 takes the form of 

K = f i /2  [eft(l/3-2) + erf(1/3-~)] (12) 

where 

and 

8% / 2  ~2 (13a) 

3-1 - ~7~ a~2 (13b) 

are dimensionless standard deviations related to the 
standard deviation of the current fluctuation. In the 
case of  dual perturbation 

K = 1/2 [erf(1/3-j + erf(1/61)] (14) 

where the dimensionless composite standard deviations 
are defined as 

, / (2(~,  + / ~ ) )  
(15a) ~2 ~ 

and 

3-1 = 
x/(2(a2a2~ + flZer22) ) 

Ic< + ~zll 
(lSb) 

The determination of  the frequency spectrum from 
the process reaction curve is illustrated numerically in 
Section 7. 

6. Electrolyzers possessing deterministic models 

dispersion are considered in this category. Since 
c = CE at any instant in a CSTER by its definition, 
Equation 16 follows directly from the solution of 
Equation 10 under a step perturbation in current as 
well as in inlet concentration: 

x = (~z~ + f lz  ~ [1 - exp ( - t / z ) ]  (16) 

The equivalent gain is given by Equations 12 or 14, 
whereas the frequency spectrum can be expressed as 

1 
q~(jco) - (17) 

1 + jzco 

Consequently, the variance of the exit concentration 
(Equation 1) acquires the relatively simple expression 

ax = J ~  1 -]- TZ(D2 d~o (18) 

In the case of a PFER,  the dynamic material 
balance [20] 

0c c~c I 
+ v T- + - 0 (19) 

at  oy z F V  

possesses an analytical solution only if the a p r i o r i  

space-dependent current is replaced by a mean value 
Im, in which case the solution of Equation 19 (dual 
step perturbations): 

x = ~ H ( t  - *)z~ + fl [ t /z  - ( t / z  - 1)H( t  - v)] z~ 

(20) 

indicates that the PFER has two separate frequency 
spectrum components: 

1 - exp (-jzco) 
~l(J co) = 7' (21a) 

60 

and 

~b2(jco ) = exp (-jzco) (21b) 

Consequently, the output variance becomes 

~ : =  K~ f]o ~ S~,(co)do + 4K~ f-~2 sin2 (zoo) & 2 ( o ) ) d o )  
g0- 

(22) 

Finally, in the case of an electrolyzer with axial dis- 
persion, further manipulation (of Equations 6 and 13 in 
[21]) yields 

x = ~(1 - Y~)z~ + fizz (23) 

where Yt (the multiplier in the last term on the right 
hand side of Equation 13 [21] at the electrolyzer exit) 
represents the effect of axial dispersion. Since If, 
approaches zero at large times, the equivalent gains 
remain unchanged, but the frequency spectrum related 
to dual perturbation acquires the form 

q~(jco) = a + b exp (-jT0co) (24) 
1 + jTtco 

where 

The CSTER, the PFER,  and electrolyzers with axial a ~ x0/x~ (25a) 
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and 

b - (Xoo - Xo)/X~ (25b) 

The time constants T o and T~ are obtained from a 
process reaction curve in the usual manner, but it is 
convenient to plot the dimensionless transient response 
(x  - Xo)/(Xoo - Xo) against time. If To < 7"1 then 
Equation 24 is simplified to a rational expression and it 
follows that 

~ = K~ f+~ (b + a) 2 + T~aZe) 2 S~,(e)) de) 
1 + T~e) 2 

(26) 
-I- K2 2 f + ~  SZ2(e)  ) de) 

7. Numerical illustration 

An arbitrary electrolyzer with numerical parameters 
given in Table 1 is subjected to stationary random 
perturbations. In the case of a single perturbation, the 
autocorrelation function of the current is assumed to 
have been determined by conventional methods, for 
example [1], as 

Rz2('c) = a2 exp ( -  b 21z]) (27) 

and, in the case of dual perturbation, it is assumed 
that the current has the same autocorrelation func- 
tion, while the inlet concentration has 

R~ (~) = a~ exp (-b1~2) (28) 

as its autocorrelation function, with numerical values 
shown in Table 1. 

7.1. S ingle  pe r tu rba t ion  

The experimental transient response of the electrolyzer 
to a low-amplitude (0.5 A) step perturbation in current 

Table 1. Parameters o f  the arbitrary electrolyzer in the numerical 
illustration (assumed values) 

Active electrolyzer vo lume 

Volumetr ic  electrolyte  flow rate 

N u m b e r  of  electrons t ransferred  

in electrode react ion of  interest  

Cur ren t  pr ior  to pe r tu rba t ion  

Inlet  concen t ra t ion  pr ior  to 

pe r tu rba t ion  

Exit  concen t ra t ion  pr ior  to 

pe r tu rba t ion  

Lumped  opera t ion  pa ramete r s  

Paramete r s  of  cor re la t ion  

funct ions 

Boundar ies  of  input  
pe r tu rba t ions  (in terms of  
d imensionless  variables):  

Lower  
Upper  

V = lOOdm 3 

Q = 5 dm 3 min  L 

n = 2  

I*  = 10A 

cy = 0 . 0 0 1 m o l d m  -3 

c[  = 3.782 x 1 0 - 4 m o l d m  -3 

= -c* /c*  = --2.6441 

fl = I* /QnFc* = 1.6441 

a t = 0 .09  a 2 = 0.15 
b I = 0.4 b 2 = 1.0 

z~ = - 0 . 3  z; = - 0 . 2  
z~' = 0.6 z~ = 0.4 

1.0 

I cs,ER . o o E , - 3 / ~ ~  
[ - - '  " / ~ " -  "~'-- PERTURBATION IN 

0.8~-- / f  CURRENT ONLY 

/ i 
0.6 t ' 

0~I_ /I /--PERTURBATION IN CURREN T / 
" I ~'i Ww AND INLET CONCENTRATION / 

L ,-,-"~ o.z83 

C 
0 20 40 60 80 I00 120 

T ime (min) 

Fig. l .  Low-ampl i tude  step pe r tu rba t ion  response  in the a rb i t ra ry  
electrolyzer [AI = 0.5 A, Ac i = -- 10- 4 mol  d m  -3]. 

(postulated for the sake of illustration) is shown in 
Fig. 1. The Smith construction technique applied 
to the x / x ~  against time plot yields T o = 4.375 
and T 1 = 13.125 rain (the Ziegler-Nichols approach 
yields the less reliable values of T o = 6 and TI = 
5.875 min). 

Equation 4 yields S~2(e) ) = 0.3/(1 + co 2) and from 
2 0.9425. Since, from Equation 13, Equation 3, az2 = 

~-~ = 6.8647 and ~2 = 3.4323, it follows from 
Equation 12 that K = 0.3970. Finally, Equation 1 is 
integrated [22] 

2 ~'oe de) 
ax = 0.0946J0 (1 + co 2)(1 + 172.266e)2) 

= 0.011245 (29) 

7.2. D u a l  pe r tu r ba t i on  

The Smith construction technique applied to the x/xo~ 
against time plot yields To = 7.5 and Tj = 7.5 min. 
For the perturbation in inlet concentration, Equation 
4 yields Sz~(e))= 0.4exp(-e)2/0.64),  then from 
Equation 3, r = 0.5672. Since zl and z2 are mutually 
independent, the combined spectrum obtained is 

s .  +v (e)) = s . (e ) )  + Sv (e)) 

= 2.7963 exp (--o92/0.64) 

+ 0.8111/(1 + 0) 2) (30) 

where u ---- c~z~ and v = flz2. Since Equation 15 yields 
6-1 = 1.8845 and 62 = 2.4875, substitution into 
Equation 14 leads to K = 0.4886 and, in consequence, 
the output variance is 

2 1.3352 IO exp (--co2/0.64)/(1 + 56.25 co 2) do  O" x = 

+ 0.3873 Io de)/[(1 + e) 2)(1 + 56.25 0)2)] 

= 0.3153 (31) 

from Equation 1 upon appropriate integration [22, 
23]. 
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J.O 
Pe =5 

0.8 ~ x'~-x~ 

0.2 

~ - - ~ - ~ - ~  vt vt 
0 I t t I T - " - ' - - - - -  

O lO 20 30 40 50 60 

Time (rain) 

Fig. 2. Step perturbation response via the axial dispersion model [Y~ 
denotes the multiplier of the AF, factor in Equaton 13 of [21]; 
x~ = 0.3466]. 

8. Comparison with electrolyzers possessing 
deterministic models 

The stochastic behaviour of a CSTER with operating 
parameters given in Table 1 can be predicted in a 
straightforward manner by the equations of Section 6. 
Since ~ = Q/V = 20 rain., the outlet concentration 

2 = 0.007076 in the single variance is computed as ax 
2 perturbation case, and ax = 0.1268 in the dual per- 

turbation case. 
If the PFER model is applied, 7 = 0.8221 rain -1, 

2 = 0.282 in the z = 20 rain and Equation 22 yields o- x 
2 = 0.774 in the dual single perturbation case, and ox 

perturbation case. The equivalent gains must be cal- 
culated separately in this case since the linear-sum 
approach via Equation 30 does not apply; the com- 
putations yield K 1 = -1.1682 and K2 = 0.3970. 

Finally, the axial dispersion model requires the 
computation of  I7, at different times, followed by the 
computation of x via Equation 23. The analysis of 
the response shown in Fig. 2 for an axial Peclet 
number of 5, yields a = 0.3494, b = 0.6506, To = 
-0 .192 and TI = 17.34min. Since To < TI, 

2 Equation 26 yields ax = 0.0743 in the single pertur- 
2 = 0.568 in the dual perturbation bation case and ax 

case. In computing KL and/s the entrance boundary 
condition consisting of a local mass balance was 
replaced by the stipulated step perturbation in the 

inlet electrolyte concentration, in order to avoid 
mathematical encumbrances whose treatment under 
deterministic conditions has been shown elsewhere 
[21, 24]. 

Table 2 contains numerical values of the standard 
deviation of the exit electrolyte concentration, a 
measure of its stochastic behaviour, and the filtering 
characteristics (i.e., the reduction of exit concentration 
fluctuation about its mean) of the electrolyzer types 
considered. The results indicate that the CSTER is the 
relatively strongest filter of input randomness, due to 
its perfect-mixing nature. Conversely, the PFER is the 
relatively weakest filter due to the complete absence of  
mixing and the distributive nature of the current per- 
turbation along the electrodes. 

The electrolyzer with transient response shown in 
Fig. 1 is a somewhat weaker filter than the CSTER, 
the extent of which is determined by its transient 
response: if the stipulated transient response showed a 
larger discrepancy with respect to the CSTER tran- 
sient response, the filtering characteristics would also 
differ more markedly. The electrolyzer with axial 
dispersion model predicts a filter characteristic 
between that of a CSTER and PFER, due to incom- 
plete backmixing associated with axial dispersion 
(Pe = 5 corresponds to a distinct axial dispersion, 
permitting neither a CSTER (Pe , 0) nor a 
(Pc ~ oe) approximation). 

The foregoing analysis also draws attention to the 
necessity of experimental response tegting as a means 
of verifying the validity of a priori model construction. 
In the numerical illustration, if the electrolyzer were to 
operate at an exit dimensionless electrolyte concentra- 
tion with a fluctuation not exceeding + 0.1 in the case 
of a single (current) perturbation, the CSTER model 
would predict acceptable performance. However, 
both the PFER and axial dispersion model (Pe ~> 5) 
would predict unacceptable performance, whereas the 
true performance would be borderline acceptable. 

9. Final remarks 

The approach presented here has two essential limi- 
tations: the first one, linearization involved in the 
equivalent gain principle, is minimal where the per- 
turbation amplitude effect is not strongly nonlinear. 

Table 2. The stochastic behaviour of electrolyzers subject to identical random perturbations in the numerical illustration 

Electrolyzer Standard deviation of the dimensionless exit concentration 

Single perturbation 
(Current) 

Dual perturbation 
(Current and inlet concentration) 

Arbitrary, with transient response in Table 2 0. t060 0.5615 
CSTER 0.0841 0.3561 
PFER 0.5310 0.8798 
Axial dispersion Pe = 5 0.2726 0.7537 

Standard deviation of dimensionless current: 0.9708 
Standard deviation of dimensionless inlet concentration: 0.7531 
Standard deviation of combined dimensionless current/inlet concentration: 1.2287 
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In the case of typical electrolyzers the error of lin- 
earization is negligible if the input perturbation 
amplitudes remain within the stipulated boundaries. 
The second limitation, the assumption of a Gaussian 
probablity distribution for the input perturbations is 
not restrictive, since the Gaussian descripton of many 
reaMife random processes is quite accurate, especially 
over long observation periods. However, integration 
in Equation 6 with non-Gaussian density functions 
can be done numerically if P(z) is known in general, 
and Equation 6 can be solved analytically in the case 
of the gamma distribution to yield 

if the dimensionless input parameter has the (0, oo) 
domain, the form of the nonlinearity is kzm; m > O, 

and c~ and fi are the distribution parameters. In the 
case of a Weibull distribution with parameters c~ 
and fl, 

k ( f l + m  + 1)  (33) 
K - {z(m+l)/~ F fl 

for the same dimensionless input parameter and non- 
linearity. The technique has, therefore, wide appli- 
cability and its full scope in the analysis of electro- 
chemical reactors should be further explored. 
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